Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.12.491584

ABSTRACT

We have investigated six COVID recovered cases with two doses of Covishield vaccination followed by reinfection. The primary SARS-CoV-2 infection found to occur with B.1 and reinfection with Omicron BA.1 and BA.2 variants. The genomic characterization and duration between two infections confirms these cases as SARS-CoV-2 reinfection. The mutation analysis of the reinfection cases correlated with immune evasion potential of BA.1 and BA.2 sub lineages. The immune response determined at different time intervals demonstrated boost post two dose vaccination, decline in pre-reinfection sera post 7 months and rise post reinfection. Apparently, these cases suffered from SARS-CoV-2 reinfection with the declined hybrid immunity acquired from primary infection and two dose covishield vaccination. This suggests the need for booster dose of vaccination. Besides this, multiple non-pharmaceutical interventions should be used to cope up with SARS-CoV-2 infection.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.28.470293

ABSTRACT

Delta variant has evolved to become dominant SARS-CoV-2 lineage worldwide and there are reports of secondary infections with varying severity in vaccinated and unvaccinated naturally recovered COVID-19 patients. As the protective immunity following the infection wanes within few months, studies of re-infection after prolonged duration is needed. Hence we assessed the potential of re-infection by Delta, Delta AY.1 and B.1 in COVID-19 recovered hamsters after 3 months of infection. Re-infection with Delta and B.1 variants in hamsters showed reduced viral shedding, lung pathology and lung viral load, whereas the upper respiratory tract viral load remained similar to that of first infection. The reduction in viral load and lung pathology after re-infection with Delta AY.1 variant was not marked. Further we assessed the disease characteristics of Delta AY.1 to understand whether it has any replication advantage over Delta variant and B.1 variant, an early isolate in Syrian hamsters. Body weight changes, viral load in respiratory organs, lung pathology, cytokine response and neutralizing antibody response were assessed. Delta AY.1 variant produced milder disease in comparison to Delta variant and the neutralizing response was similar against Delta, B.1 and B.1.351 variant in contrast to Delta or B.1 infected hamsters which showed a significant reduction in neutralization titres against B.1.351. Elevation of IL-6 levels was observed post infection in hamsters after primary infection. The prior infection could not produce sterilizing immunity but the protective effect was evident following re-infection. This indicates the importance of the transmission prevention efforts even after achieving herd immunity.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.24.453631

ABSTRACT

B.1.617 lineage is becoming a dominant SARS-CoV-2 lineage worldwide and was the dominant lineage reported in second COVID-19 wave in India, which necessitated studying the properties of the variant. We evaluated the pathogenicity and virus shedding of B.1.617.2 (Delta) and B.1.617.3 lineage of SARS-CoV-2 and compared with that of B.1, an early virus isolate with D614G mutation in Syrian hamster model. Viral load, antibody response and lung disease were studied. No significant difference in the virus shedding pattern was observed among these variants studied. A significantly high SARS-CoV-2 sub genomic RNA could be detected in the respiratory tract of hamsters infected with Delta variant for 14 days. Delta variant induced lung disease of moderate severity in 40% of infected animals. The neutralizing capability of the B.1, Delta and B.1.617.3 variant infected animals were found significantly lower with the B.1.351 (Beta variant). The findings of the study support the attributed disease severity and the increased transmission potential of the Delta variant.


Subject(s)
Lung Diseases , COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.12.443645

ABSTRACT

Covishield comprises the larger proportion in the vaccination program in India. Hence, it is of utmost importance to understand neutralizing capability of vaccine against the B.1.617.1 variant which is considered to responsible for surge of the cases in India. The neutralizing-antibody (NAb) titer against B.1.167.1 and prototype B.1 variant (D614G) was determined of the vaccine sera (4 weeks after second dose) of COVID-19 naive subjects (n=43) and COVID-19 recovered subjects (n=18). The results demonstrated that sera of COVID-19 recovered subjects (n=18) who received two doses of Covishield have higher NAb response compared to the COVID-19 naive with a significant difference (p<0.0001) in NAb titer against B.1 and B.1.617.1 In-spite of reduction in the neutralizing titer against B.1.617.1 variant; Covishield vaccine-induced antibodies are likely to be protective to limit the severity and mortality of the disease in the vaccinated individuals.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.05.442760

ABSTRACT

Background: The recent emergence of new SARS-CoV-2 lineage B.1.617 in India has been associated with a surge in the number of daily infections. This variant has combination of specific mutations L452R, E484Q and P681R reported to possibly enhance the transmissibility with likelihood of escaping the immunity. We investigated the viral load and pathogenic potential of B.1.617.1 in Syrian golden hamsters. Methods: Two groups of Syrian golden hamsters (9 each) were inoculated intranasally with SARS CoV-2 isolates, B.1 (D614G) and B.1.617.1 respectively. The animals were monitored daily for the clinical signs and body weight. The necropsy of three hamsters each was performed on 3, 5- and 7-days post-infection (DPI). Throat swab (TS), nasal wash (NW) and organ samples (lungs, nasal turbinate, trachea) were collected and screened using SARS-CoV-2 specific Real-time RT-PCR. Results: The hamsters infected with B.1.617.1 demonstrated increased body weight loss compared to B.1 variant. The highest viral load was observed in nasal turbinate and lung specimens of animals infected with B.1.167.1 on 3 DPI. Neutralizing antibody (NAb) and IgG response in hamsters of both the groups were observed from 5 and 7 DPI respectively. However, higher neutralizing antibody titers were observed against B.1.167.1. Gross pathology showed pronounced lung lesions and hemorrhage with B.1.671 compared to B.1. Conclusions: B.1617.1 and B.1 variant varied greatly in their infectiousness, pathogenesis in hamster model. This study demonstrates higher pathogenicity in hamsters evident with reduced body weight, higher viral load in lungs and pronounced lung lesions as compared to B.1 variant.


Subject(s)
Hemorrhage , Lung Diseases , Tracheomalacia , Weight Loss
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.23.441101

ABSTRACT

The drastic rise in the number of cases in Maharashtra, India has created a matter of concern for public health experts. Twelve isolates of VUI lineage B.1.617 were propagated in VeroCCL81 cells and characterized. Convalescent sera of the COVID-19 cases and recipients of BBV152 (Covaxin) were able to neutralize VUI B.1.617.


Subject(s)
COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.26.426986

ABSTRACT

We performed the plaque reduction neutralization test (PRNT50) using sera collected from the 26 recipients of BBV152/COVAXINTM against hCoV-19/India/20203522 (UK-variant) and hCoV27 19/India/2020Q111 (heterologous strain). A comparable neutralization activity of sera of the vaccinated individuals showed against UK-variant and the heterologous strain with similar efficiency, dispel the uncertainty of possible neutralization escape.

8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.09.285445

ABSTRACT

We report the development and evaluation of safety and immunogenicity of a whole virion inactivated SARS-COV-2 vaccine (BBV152), adjuvanted with aluminium hydroxide gel (Algel), or a novel TLR7/8 agonist adsorbed Algel. We used a well-characterized SARS-CoV-2 strain and an established vero cell platform to produce large-scale GMP grade highly purified inactivated antigen, BBV152. Product development and manufacturing were carried out in a BSL-3 facility. Immunogenicity was determined at two antigen concentrations (3g and 6g), with two different adjuvants, in mice, rats, and rabbits. Our results show that BBV152 vaccine formulations generated significantly high antigen-binding and neutralizing antibody titers, at both concentrations, in all three species with excellent safety profiles. The inactivated vaccine formulation containing TLR7/8 agonist adjuvant-induced Th1 biased antibody responses with elevated IgG2a/IgG1 ratio and increased levels of SARS-CoV-2 specific IFN-{gamma}+ CD4 T lymphocyte response. Our results support further development for Phase I/II clinical trials in humans.

SELECTION OF CITATIONS
SEARCH DETAIL